

Deadline : 2025/11/28, 9:00.

1. Suppose that $g : \mathbb{R} \rightarrow [a, b]$ is a continuous function and f is integrable on $[a, b]$. Prove that

$$F(x) := \int_a^{g(x)} f(t) dt$$

is continuous on \mathbb{R} .

(**Hint:** Express $F(x)$ as a composite function of $g(x)$ and $G(x) := \int_a^x f(t) dt$.)

2. Evaluate the following limit.

$$(a) \lim_{n \rightarrow \infty} \frac{1}{n^{16}} \sum_{i=1}^n i^{15}$$

$$(b) \lim_{n \rightarrow \infty} n^{-\frac{3}{2}} \sum_{i=1}^n \sqrt{i}$$

$$(c) \lim_{n \rightarrow \infty} \sum_{i=1}^{2n} \frac{i^2}{n^3}$$

$$(d) \lim_{n \rightarrow \infty} \sum_{i=n}^{2n} \frac{1}{i}$$

3. **The error function** The *error function*

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

is used in probability, statistics, and engineering.

(a) Show that $\int_a^b e^{-t^2} dt = \frac{1}{2}\sqrt{\pi}[\operatorname{erf}(b) - \operatorname{erf}(a)]$.

(b) Show that the function $y = e^{x^2} \operatorname{erf}(x)$ satisfies the differential equation $y' = 2xy + \frac{2}{\sqrt{\pi}}$.

4. Prove that for all $x > 0$ and all positive integers n ,

$$e^x > 1 + x + \frac{x^2}{2!} + \cdots + \frac{x^n}{n!}$$

where $n! = n(n-1)(n-2)\cdots 3 \cdot 2 \cdot 1$.

5. (90' Calculus Exam)

(a) Use integration by parts to show that if f has an inverse with continuous first derivative, then

$$\int f^{-1}(x) dx = xf^{-1}(x) - \int x(f^{-1})'(x) dx.$$

(b) If $\int f(x) dx = F(x) + C$, express $\int f^{-1}(x) dx$ in terms of F .

(c) Calculate $\int \tan^{-1} x dx$.

6. (a) Show that $\cos(x^2) \geq \cos x$ for $0 \leq x \leq 1$.

(b) Deduce that $\int_0^{\frac{\pi}{6}} \cos(x^2) dx \geq \frac{1}{2}$.

7. If f is continuous on $[0, \pi]$, use the substitution $u = \pi - x$ to show that

$$\int_0^{\pi} xf(\sin x) dx = \frac{\pi}{2} \int_0^{\pi} f(\sin x) dx.$$

8. (a) If f is continuous, prove that

$$\int_0^{\frac{\pi}{2}} f(\cos x) dx = \int_0^{\frac{\pi}{2}} f(\sin x) dx.$$

(b) Use part (a) to evaluate

$$\int_0^{\frac{\pi}{2}} \cos^2 x dx \quad \text{and} \quad \int_0^{\frac{\pi}{2}} \sin^2 x dx.$$

9. (Mean value theorem for integrals) Suppose f is continuous on $[a, b]$, show that there exists $c \in (a, b)$ such that

$$\int_a^b f(x) dx = f(c)(b - a).$$

10. Let f be a function such that f' is continuous on $[a, b]$. Show that

$$\int_a^b f(t)f'(t) dt = \frac{1}{2} [(f(b))^2 - (f(a))^2].$$